Copied to
clipboard

G = D7×C22×C6order 336 = 24·3·7

Direct product of C22×C6 and D7

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D7×C22×C6, C213C24, C423C23, C73(C23×C6), C143(C22×C6), (C22×C42)⋊5C2, (C22×C14)⋊11C6, (C2×C42)⋊12C22, (C2×C14)⋊13(C2×C6), SmallGroup(336,225)

Series: Derived Chief Lower central Upper central

C1C7 — D7×C22×C6
C1C7C21C3×D7C6×D7C2×C6×D7 — D7×C22×C6
C7 — D7×C22×C6
C1C22×C6

Generators and relations for D7×C22×C6
 G = < a,b,c,d,e | a2=b2=c6=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 880 in 268 conjugacy classes, 166 normal (10 characteristic)
C1, C2, C2, C3, C22, C22, C6, C6, C7, C23, C23, C2×C6, C2×C6, D7, C14, C24, C21, C22×C6, C22×C6, D14, C2×C14, C3×D7, C42, C23×C6, C22×D7, C22×C14, C6×D7, C2×C42, C23×D7, C2×C6×D7, C22×C42, D7×C22×C6
Quotients: C1, C2, C3, C22, C6, C23, C2×C6, D7, C24, C22×C6, D14, C3×D7, C23×C6, C22×D7, C6×D7, C23×D7, C2×C6×D7, D7×C22×C6

Smallest permutation representation of D7×C22×C6
On 168 points
Generators in S168
(1 90)(2 91)(3 85)(4 86)(5 87)(6 88)(7 89)(8 92)(9 93)(10 94)(11 95)(12 96)(13 97)(14 98)(15 99)(16 100)(17 101)(18 102)(19 103)(20 104)(21 105)(22 106)(23 107)(24 108)(25 109)(26 110)(27 111)(28 112)(29 113)(30 114)(31 115)(32 116)(33 117)(34 118)(35 119)(36 120)(37 121)(38 122)(39 123)(40 124)(41 125)(42 126)(43 127)(44 128)(45 129)(46 130)(47 131)(48 132)(49 133)(50 134)(51 135)(52 136)(53 137)(54 138)(55 139)(56 140)(57 141)(58 142)(59 143)(60 144)(61 145)(62 146)(63 147)(64 148)(65 149)(66 150)(67 151)(68 152)(69 153)(70 154)(71 155)(72 156)(73 157)(74 158)(75 159)(76 160)(77 161)(78 162)(79 163)(80 164)(81 165)(82 166)(83 167)(84 168)
(1 69)(2 70)(3 64)(4 65)(5 66)(6 67)(7 68)(8 71)(9 72)(10 73)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 80)(18 81)(19 82)(20 83)(21 84)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 50)(30 51)(31 52)(32 53)(33 54)(34 55)(35 56)(36 57)(37 58)(38 59)(39 60)(40 61)(41 62)(42 63)(85 148)(86 149)(87 150)(88 151)(89 152)(90 153)(91 154)(92 155)(93 156)(94 157)(95 158)(96 159)(97 160)(98 161)(99 162)(100 163)(101 164)(102 165)(103 166)(104 167)(105 168)(106 127)(107 128)(108 129)(109 130)(110 131)(111 132)(112 133)(113 134)(114 135)(115 136)(116 137)(117 138)(118 139)(119 140)(120 141)(121 142)(122 143)(123 144)(124 145)(125 146)(126 147)
(1 34 20 27 13 41)(2 35 21 28 14 42)(3 29 15 22 8 36)(4 30 16 23 9 37)(5 31 17 24 10 38)(6 32 18 25 11 39)(7 33 19 26 12 40)(43 71 57 64 50 78)(44 72 58 65 51 79)(45 73 59 66 52 80)(46 74 60 67 53 81)(47 75 61 68 54 82)(48 76 62 69 55 83)(49 77 63 70 56 84)(85 113 99 106 92 120)(86 114 100 107 93 121)(87 115 101 108 94 122)(88 116 102 109 95 123)(89 117 103 110 96 124)(90 118 104 111 97 125)(91 119 105 112 98 126)(127 155 141 148 134 162)(128 156 142 149 135 163)(129 157 143 150 136 164)(130 158 144 151 137 165)(131 159 145 152 138 166)(132 160 146 153 139 167)(133 161 147 154 140 168)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)
(1 47)(2 46)(3 45)(4 44)(5 43)(6 49)(7 48)(8 52)(9 51)(10 50)(11 56)(12 55)(13 54)(14 53)(15 59)(16 58)(17 57)(18 63)(19 62)(20 61)(21 60)(22 66)(23 65)(24 64)(25 70)(26 69)(27 68)(28 67)(29 73)(30 72)(31 71)(32 77)(33 76)(34 75)(35 74)(36 80)(37 79)(38 78)(39 84)(40 83)(41 82)(42 81)(85 129)(86 128)(87 127)(88 133)(89 132)(90 131)(91 130)(92 136)(93 135)(94 134)(95 140)(96 139)(97 138)(98 137)(99 143)(100 142)(101 141)(102 147)(103 146)(104 145)(105 144)(106 150)(107 149)(108 148)(109 154)(110 153)(111 152)(112 151)(113 157)(114 156)(115 155)(116 161)(117 160)(118 159)(119 158)(120 164)(121 163)(122 162)(123 168)(124 167)(125 166)(126 165)

G:=sub<Sym(168)| (1,90)(2,91)(3,85)(4,86)(5,87)(6,88)(7,89)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,99)(16,100)(17,101)(18,102)(19,103)(20,104)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,113)(30,114)(31,115)(32,116)(33,117)(34,118)(35,119)(36,120)(37,121)(38,122)(39,123)(40,124)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,141)(58,142)(59,143)(60,144)(61,145)(62,146)(63,147)(64,148)(65,149)(66,150)(67,151)(68,152)(69,153)(70,154)(71,155)(72,156)(73,157)(74,158)(75,159)(76,160)(77,161)(78,162)(79,163)(80,164)(81,165)(82,166)(83,167)(84,168), (1,69)(2,70)(3,64)(4,65)(5,66)(6,67)(7,68)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)(42,63)(85,148)(86,149)(87,150)(88,151)(89,152)(90,153)(91,154)(92,155)(93,156)(94,157)(95,158)(96,159)(97,160)(98,161)(99,162)(100,163)(101,164)(102,165)(103,166)(104,167)(105,168)(106,127)(107,128)(108,129)(109,130)(110,131)(111,132)(112,133)(113,134)(114,135)(115,136)(116,137)(117,138)(118,139)(119,140)(120,141)(121,142)(122,143)(123,144)(124,145)(125,146)(126,147), (1,34,20,27,13,41)(2,35,21,28,14,42)(3,29,15,22,8,36)(4,30,16,23,9,37)(5,31,17,24,10,38)(6,32,18,25,11,39)(7,33,19,26,12,40)(43,71,57,64,50,78)(44,72,58,65,51,79)(45,73,59,66,52,80)(46,74,60,67,53,81)(47,75,61,68,54,82)(48,76,62,69,55,83)(49,77,63,70,56,84)(85,113,99,106,92,120)(86,114,100,107,93,121)(87,115,101,108,94,122)(88,116,102,109,95,123)(89,117,103,110,96,124)(90,118,104,111,97,125)(91,119,105,112,98,126)(127,155,141,148,134,162)(128,156,142,149,135,163)(129,157,143,150,136,164)(130,158,144,151,137,165)(131,159,145,152,138,166)(132,160,146,153,139,167)(133,161,147,154,140,168), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168), (1,47)(2,46)(3,45)(4,44)(5,43)(6,49)(7,48)(8,52)(9,51)(10,50)(11,56)(12,55)(13,54)(14,53)(15,59)(16,58)(17,57)(18,63)(19,62)(20,61)(21,60)(22,66)(23,65)(24,64)(25,70)(26,69)(27,68)(28,67)(29,73)(30,72)(31,71)(32,77)(33,76)(34,75)(35,74)(36,80)(37,79)(38,78)(39,84)(40,83)(41,82)(42,81)(85,129)(86,128)(87,127)(88,133)(89,132)(90,131)(91,130)(92,136)(93,135)(94,134)(95,140)(96,139)(97,138)(98,137)(99,143)(100,142)(101,141)(102,147)(103,146)(104,145)(105,144)(106,150)(107,149)(108,148)(109,154)(110,153)(111,152)(112,151)(113,157)(114,156)(115,155)(116,161)(117,160)(118,159)(119,158)(120,164)(121,163)(122,162)(123,168)(124,167)(125,166)(126,165)>;

G:=Group( (1,90)(2,91)(3,85)(4,86)(5,87)(6,88)(7,89)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,99)(16,100)(17,101)(18,102)(19,103)(20,104)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,113)(30,114)(31,115)(32,116)(33,117)(34,118)(35,119)(36,120)(37,121)(38,122)(39,123)(40,124)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,141)(58,142)(59,143)(60,144)(61,145)(62,146)(63,147)(64,148)(65,149)(66,150)(67,151)(68,152)(69,153)(70,154)(71,155)(72,156)(73,157)(74,158)(75,159)(76,160)(77,161)(78,162)(79,163)(80,164)(81,165)(82,166)(83,167)(84,168), (1,69)(2,70)(3,64)(4,65)(5,66)(6,67)(7,68)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)(42,63)(85,148)(86,149)(87,150)(88,151)(89,152)(90,153)(91,154)(92,155)(93,156)(94,157)(95,158)(96,159)(97,160)(98,161)(99,162)(100,163)(101,164)(102,165)(103,166)(104,167)(105,168)(106,127)(107,128)(108,129)(109,130)(110,131)(111,132)(112,133)(113,134)(114,135)(115,136)(116,137)(117,138)(118,139)(119,140)(120,141)(121,142)(122,143)(123,144)(124,145)(125,146)(126,147), (1,34,20,27,13,41)(2,35,21,28,14,42)(3,29,15,22,8,36)(4,30,16,23,9,37)(5,31,17,24,10,38)(6,32,18,25,11,39)(7,33,19,26,12,40)(43,71,57,64,50,78)(44,72,58,65,51,79)(45,73,59,66,52,80)(46,74,60,67,53,81)(47,75,61,68,54,82)(48,76,62,69,55,83)(49,77,63,70,56,84)(85,113,99,106,92,120)(86,114,100,107,93,121)(87,115,101,108,94,122)(88,116,102,109,95,123)(89,117,103,110,96,124)(90,118,104,111,97,125)(91,119,105,112,98,126)(127,155,141,148,134,162)(128,156,142,149,135,163)(129,157,143,150,136,164)(130,158,144,151,137,165)(131,159,145,152,138,166)(132,160,146,153,139,167)(133,161,147,154,140,168), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168), (1,47)(2,46)(3,45)(4,44)(5,43)(6,49)(7,48)(8,52)(9,51)(10,50)(11,56)(12,55)(13,54)(14,53)(15,59)(16,58)(17,57)(18,63)(19,62)(20,61)(21,60)(22,66)(23,65)(24,64)(25,70)(26,69)(27,68)(28,67)(29,73)(30,72)(31,71)(32,77)(33,76)(34,75)(35,74)(36,80)(37,79)(38,78)(39,84)(40,83)(41,82)(42,81)(85,129)(86,128)(87,127)(88,133)(89,132)(90,131)(91,130)(92,136)(93,135)(94,134)(95,140)(96,139)(97,138)(98,137)(99,143)(100,142)(101,141)(102,147)(103,146)(104,145)(105,144)(106,150)(107,149)(108,148)(109,154)(110,153)(111,152)(112,151)(113,157)(114,156)(115,155)(116,161)(117,160)(118,159)(119,158)(120,164)(121,163)(122,162)(123,168)(124,167)(125,166)(126,165) );

G=PermutationGroup([[(1,90),(2,91),(3,85),(4,86),(5,87),(6,88),(7,89),(8,92),(9,93),(10,94),(11,95),(12,96),(13,97),(14,98),(15,99),(16,100),(17,101),(18,102),(19,103),(20,104),(21,105),(22,106),(23,107),(24,108),(25,109),(26,110),(27,111),(28,112),(29,113),(30,114),(31,115),(32,116),(33,117),(34,118),(35,119),(36,120),(37,121),(38,122),(39,123),(40,124),(41,125),(42,126),(43,127),(44,128),(45,129),(46,130),(47,131),(48,132),(49,133),(50,134),(51,135),(52,136),(53,137),(54,138),(55,139),(56,140),(57,141),(58,142),(59,143),(60,144),(61,145),(62,146),(63,147),(64,148),(65,149),(66,150),(67,151),(68,152),(69,153),(70,154),(71,155),(72,156),(73,157),(74,158),(75,159),(76,160),(77,161),(78,162),(79,163),(80,164),(81,165),(82,166),(83,167),(84,168)], [(1,69),(2,70),(3,64),(4,65),(5,66),(6,67),(7,68),(8,71),(9,72),(10,73),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,80),(18,81),(19,82),(20,83),(21,84),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,50),(30,51),(31,52),(32,53),(33,54),(34,55),(35,56),(36,57),(37,58),(38,59),(39,60),(40,61),(41,62),(42,63),(85,148),(86,149),(87,150),(88,151),(89,152),(90,153),(91,154),(92,155),(93,156),(94,157),(95,158),(96,159),(97,160),(98,161),(99,162),(100,163),(101,164),(102,165),(103,166),(104,167),(105,168),(106,127),(107,128),(108,129),(109,130),(110,131),(111,132),(112,133),(113,134),(114,135),(115,136),(116,137),(117,138),(118,139),(119,140),(120,141),(121,142),(122,143),(123,144),(124,145),(125,146),(126,147)], [(1,34,20,27,13,41),(2,35,21,28,14,42),(3,29,15,22,8,36),(4,30,16,23,9,37),(5,31,17,24,10,38),(6,32,18,25,11,39),(7,33,19,26,12,40),(43,71,57,64,50,78),(44,72,58,65,51,79),(45,73,59,66,52,80),(46,74,60,67,53,81),(47,75,61,68,54,82),(48,76,62,69,55,83),(49,77,63,70,56,84),(85,113,99,106,92,120),(86,114,100,107,93,121),(87,115,101,108,94,122),(88,116,102,109,95,123),(89,117,103,110,96,124),(90,118,104,111,97,125),(91,119,105,112,98,126),(127,155,141,148,134,162),(128,156,142,149,135,163),(129,157,143,150,136,164),(130,158,144,151,137,165),(131,159,145,152,138,166),(132,160,146,153,139,167),(133,161,147,154,140,168)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168)], [(1,47),(2,46),(3,45),(4,44),(5,43),(6,49),(7,48),(8,52),(9,51),(10,50),(11,56),(12,55),(13,54),(14,53),(15,59),(16,58),(17,57),(18,63),(19,62),(20,61),(21,60),(22,66),(23,65),(24,64),(25,70),(26,69),(27,68),(28,67),(29,73),(30,72),(31,71),(32,77),(33,76),(34,75),(35,74),(36,80),(37,79),(38,78),(39,84),(40,83),(41,82),(42,81),(85,129),(86,128),(87,127),(88,133),(89,132),(90,131),(91,130),(92,136),(93,135),(94,134),(95,140),(96,139),(97,138),(98,137),(99,143),(100,142),(101,141),(102,147),(103,146),(104,145),(105,144),(106,150),(107,149),(108,148),(109,154),(110,153),(111,152),(112,151),(113,157),(114,156),(115,155),(116,161),(117,160),(118,159),(119,158),(120,164),(121,163),(122,162),(123,168),(124,167),(125,166),(126,165)]])

120 conjugacy classes

class 1 2A···2G2H···2O3A3B6A···6N6O···6AD7A7B7C14A···14U21A···21F42A···42AP
order12···22···2336···66···677714···1421···2142···42
size11···17···7111···17···72222···22···22···2

120 irreducible representations

dim1111112222
type+++++
imageC1C2C2C3C6C6D7D14C3×D7C6×D7
kernelD7×C22×C6C2×C6×D7C22×C42C23×D7C22×D7C22×C14C22×C6C2×C6C23C22
# reps11412282321642

Matrix representation of D7×C22×C6 in GL4(𝔽43) generated by

42000
04200
00420
00042
,
1000
04200
00420
00042
,
42000
04200
0060
0006
,
1000
0100
0001
004215
,
1000
04200
003415
0099
G:=sub<GL(4,GF(43))| [42,0,0,0,0,42,0,0,0,0,42,0,0,0,0,42],[1,0,0,0,0,42,0,0,0,0,42,0,0,0,0,42],[42,0,0,0,0,42,0,0,0,0,6,0,0,0,0,6],[1,0,0,0,0,1,0,0,0,0,0,42,0,0,1,15],[1,0,0,0,0,42,0,0,0,0,34,9,0,0,15,9] >;

D7×C22×C6 in GAP, Magma, Sage, TeX

D_7\times C_2^2\times C_6
% in TeX

G:=Group("D7xC2^2xC6");
// GroupNames label

G:=SmallGroup(336,225);
// by ID

G=gap.SmallGroup(336,225);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,10373]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^6=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽